skip to main content


Search for: All records

Creators/Authors contains: "Hance, Travis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present IronSync, an automated verification framework for concurrent code with shared memory. IronSync scales to complex systems by splitting system-wide proofs into isolated concerns such that each can be substantially automated. As a starting point, IronSync’s ownership type system allows a developer to straightforwardly prove both data safety and the logical correctness of thread-local operations. IronSync then introduces the concept of a Localized Transition System, which connects the correctness of local actions to the correctness of the entire system. We demonstrate IronSync by verifying two state-of-the-art concurrent systems comprising thousands of lines: a library for black-box replication on NUMA architectures, and a highly concurrent page cache. 
    more » « less
    Free, publicly-accessible full text available July 10, 2024
  2. Today's distributed systems are increasingly complex, leading to subtle bugs that are difficult to detect with standard testing methods. Formal verification can provably rule out such bugs, but historically it has been excessively labor intensive. For distributed systems, recent work shows that, given a correct inductive invariant, nearly all other proof work can be automated; however, the construction of such invariants is still a difficult manual task. In this paper, we demonstrate a new methodology for automating the construction of inductive invariants, given as input a (formal) description of the distributed system and a desired safety condition. Our system performs an exhaustive search within a given space of candidate invariants in order to find and verify inductive invariants which suffice to prove the safety condition. Central to our ability to search efficiently is our algorithm's ability to learn from counterexamples whenever a candidate fails to be invariant, allowing us to check the remaining candidates more efficiently. We hypothesize that many distributed systems, even complex ones, may have concise invariants that make this approach practical, and in support of this, we show that our system is able to identify and verify inductive invariants for the Paxos protocol, which proved too complex for previous work. 
    more » « less
  3. null (Ed.)
    Today's distributed systems are increasingly complex, leading to subtle bugs that are difficult to detect with standard testing methods. Formal verification can provably rule out such bugs, but historically it has been excessively labor intensive. For distributed systems, recent work shows that, given a correct inductive invariant, nearly all other proof work can be automated; however, the construction of such invariants is still a difficult manual task. In this paper, we demonstrate a new methodology for automating the construction of inductive invariants, given as input a (formal) description of the distributed system and a desired safety condition. Our system performs an exhaustive search within a given space of candidate invariants in order to find and verify inductive invariants which suffice to prove the safety condition. Central to our ability to search efficiently is our algorithm's ability to learn from counterexamples whenever a candidate fails to be invariant, allowing us to check the remaining candidates more efficiently. We hypothesize that many distributed systems, even complex ones, may have concise invariants that make this approach practical, and in support of this, we show that our system is able to identify and verify inductive invariants for the Paxos protocol, which proved too complex for previous work. 
    more » « less
  4. null (Ed.)
    To verify distributed systems, prior work introduced a methodology for verifying both the code running on individual machines and the correctness of the overall system when those machines interact via an asynchronous distributed environment. The methodology requires neither domain-specific logic nor tooling. However, distributed systems are only one instance of the more general phenomenon of systems code that interacts with an asynchronous environment. We argue that the software of a storage system can (and should!) be viewed similarly. We evaluate this approach in VeriSafeKV, a key-value store based on a state-of-the-art B^ε-tree. In building VeriSafeKV, we introduce new techniques to scale automated verification to larger code bases, still without introducing domain-specific logic or tooling. In particular, we show a discipline that keeps the automated verification development cycle responsive. We also combine linear types with dynamic frames to relieve the programmer from most heap-reasoning obligations while enabling them to break out of the linear type system when needed. VeriSafeKV exhibits similar query performance to unverified databases. Its insertion performance is 15× faster than unverified BerkeleyDB and 6× slower than RocksDB. 
    more » « less
  5. null (Ed.)
    We present Lifty, a domain-specific language for data-centric applications that manipulate sensitive data. A Lifty programmer annotates the sources of sensitive data with declarative security policies, and the language statically and automatically verifies that the application handles the data according to the policies. Moreover, if verification fails, Lifty suggests a provably correct repair, thereby easing the programmer burden of implementing policy enforcing code throughout the application. The main insight behind Lifty is to encode information flow control using liquid types, an expressive yet decidable type system. Liquid types enable fully automatic checking of complex, data dependent policies, and power our repair mechanism via type-driven error localization and patch synthesis. Our experience using Lifty to implement three case studies from the literature shows that (1) the Lifty policy language is sufficiently expressive to specify many real-world policies, (2) the Lifty type checker is able to verify secure programs and find leaks in insecure programs quickly, and (3) even if the programmer leaves out all policy enforcing code, the Lifty repair engine is able to patch all leaks automatically within a reasonable time. 
    more » « less